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We study Cesaro means (t ime averages) of the evolution measures of the class
of permutative cellular automata over {0,1}N defined by (v«-vl n = xn +R +
nf=o' (1 +bj + xn+ j), where B = b 0 - - - b R , is an aperiodic block in {0, 1 }R

and operations are taken mod 2. If the initial measure is Bernoulli, we prove
that the limit of the Cesaro mean of the first column distribution exists. When
R= 1 and B = 1 , t p B is the mod 2 sum automaton. For this automaton we show
that the limit is the (1/2, 1/2(-Bernoulli measure, and if the initial measure is
Markov, we show that the limit of Cesaro mean of the one-site distribution is
equidistributed.

1. INTRODUCTION AND MAIN RESULTS

Let A be a finite alphabet, denote by XA = AN the compact product space.
For xe XA and integers 0 ^ n ^ m ^ oc we denote by x(n, m) the block of
x between coordinates n and m; if n =m we also use xn or x(n). A cellular
automaton cp: XA -> XA is defined by a local rule <j>: AR+1 —» A by means of
(<px)n = <p(xn,..., xn + R), and R is called the radius of the automaton. In the
sequel we identify q> with (p. By a: XA -> XA we mean the shift transforma-
tion, (0x)n = xn +1. We remind that a transformation < p : X A - * X A is a
cellular automaton if it is continuous and shift-commuting, q>"a = a -(p.

Let P be a cr-invariant probability measure on XA and q>: XA - »X A

a cellular automaton. We denote by P>°<p~" the induced measure by (pn

on XA, i.e., P ° ( p - " ( C ) = P((/>-"C) for C<^XA a measurable set. The limit
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where operations are taken mod 2. This rule shifts the value of xn + R to
position « if x(n, n + R — 1) ̂  B and shifts xn + R=l + xn+R otherwise. This
automaton is clearly a permutative one. If R=1 and B=1, (<pBx)n =
xn + xn + 1 and it is called the mod 2 sum automaton. We denote it by (p2.
We can also write q>2 = id+a, where id is the identity transformation on X2.

Permutative cellular automata are positively expansive. That is, a point
xe XA is uniquely determined from x!p = (({>"x(0 , R — 1 ) ) H e N (see ref. [BM]).
Therefore, the study of the limit Cesaro mean law Q^ is equivalent to the
study of the limit of Cesaro means of type

of the Cesaro mean law, when it exists, is given by Qv = lim^., „( 1/N+ 1)
Sn^tf P ° <fl~"- The limit Cesaro mean of the one-site distribution is Q^[/] fc
for ieA, where [i~\k= {xeAN:xk = i} (since P is er-invariant £&,,[/]* does
not depend on k).

Here we shall study a subclass of right permutative cellular automata.
This family of automata has been widely studied in different contexts since
the work of Hedlund (1969), and it is a natural class of positively expansive
cellular automata. They are defined in the following way. Fix Re N\{0} to
be the radius of the automaton, and for each weAR choose a permutation
&w: A -» A. The permutative cellular automaton <py: XA -» XA associated to
<S = (<3w\weAR) is given by (<p9x)n = &Xii...Xii+x^(xn + R). Permutative
cellular automata are onto and the uniform Bernoulli measure on XA is q>^
invariant. Furthermore, this last property characterize onto cellular
automata (see ref. [H]).

To introduce the objects of this work let us fix some notation. The
alphabet of our automata is Z2= {0, 1} and we put X2 = XZ2. By [i] we
mean the mod 2 class of ieZ 2 , so [a+ b] is the mod 2 sum in Z. We
extend the mod 2 sum to X2 ,the configuration [x + j] is given by
[x + y]k = [xk + yk]- 1° the sequel and if it is clear from the context we
will write a + b instead of [a + b] for a, AeZ 2 . For aeZ2 we also put
a = a+ 1 eZ2 .

Let Re N\{0} and B = b0- • -b R - 1 eZ2 be an aperiodic block, that is,
V/e{0,...,R-1}, b f - b R _ 1 ^ b 0 - - - b R _ 1 _ i . We define the cellular auto-
maton (pB by
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A Bernoulli measure is a Markov one by taking ptj = nj for jeZ2 and
reciprocally a Markov measure PP such that P01 + P10 = 1, is the Bernoulli
measure PV.

Our main results are the following.

Theorem 1. Let B be an aperiodic block in ZR
2. For PK a Bernoulli

measure on X2 we have that the following limit exists

for any £e N\{0} and a0,..., a(_\ eZ2. |
In the case that B is a single letter the limit in Theorem 1 can be com-

puted explicitly.

Theorem 2. Let B = 0 or B = 1.

(i) For Pn a Bernoulli measure on X2 the limit of the Cesaro mean
law, QvB, exists and it is the equidistributed Bernoulli measure: Q<fB =
li I\N
V2> 21 •

(ii) For PP a Markov invariant measure on X2 the Cesaro mean of
the one-site distribution exists and it is Q,j[/]* = 2 f°r 'eZ2 . |

The mod 2 sum automaton has been already studied in different con-
texts oftenly with respect to the uniform Bernoulli measure PB = (|, ^)N in
which case the statement of the theorem is trivial. In this uniform case, all
its ergodic properties are known, for instance see Shereshevsky (1992). Also
Wolfram (1986) studied this automaton as a random sequence generator.
Lind (1984) studied the automaton (<px)k = xk-1 +xk + 1 defined in Zf. He
states the analogous of Theorem 2 (i) by considering the automaton as an
endomorphism of a compact group. In this context see also Courbage
(1989). Our proof is based upon the combinatorial properties of the rule
which gives insight on the computations for proving Theorem 1.

In this work we shall only deal with Markov invariant measures and
with Bernoulli measures on X2. The notation will be the following one. By
n = ( n 0 , n 1 ) we mean a non trivial probability vector i.e., TT, = 1 — n0,
0 < 7 T 0 < 1 . The Bernoulli measure on X2 is denoted by PK = rcN. By
P = (ptj\ i, jeZ2) we denote a transition matrix. The invariant probability
vector of P is JIP = (UQ, rcf) with n? = (p\^t,i/Po\ + />io)- On %2 we denote
by PP the Markov shift invariant measure given by
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Let us remark that Theorem 2 is a tool for improving random gener-
ators. In fact, if the generator is biased because the sequence is Bernoulli,
but not uniform, part (i) of the Theorem provides a way to suppress the
bias because the mod 2 Cesaro evolution approaches uniform random
sequences. If the bias is Markovian part ( i i ) of the Theorem asserts that the
Cesaro mean evolution randomized the one-site distribution.

We notice that general permutative cellular automata appears in
several ways in the literature. In dynamics they are basic examples of
positively expansive cellular automata. Their high degree of sensitivity
motivated their use as one-dimensional models for turbulence and non dis-
sipative hydrodynamics. In particular, they present periodic traveling pat-
terns, see Urias et al. (1996).

We point out that in general P°<P0" does not converge. For instance,
if R=1 and B=1 the equalities (cp^x)0 = x 0 +x 2 « and (<pl"~lx)0 =
S?!"̂ 1 xt (see (1) below imply that, if the initial measure is Bernoulli but
not equidistributed, then limM_0 0 P"0^" cannot exist.

2. PROOF OF THEOREM 2

In the sequel we shall need an explicit formula for the iterates of <p2.
It can be directly shown by induction that (p'2 = Y.p<n [(£)] ffl>- The bino-
mial coefficient mod 2 can be completely determined. To describe it denote
by ^.(N) = {/sN: |/| <oo} the class of finite subsets of N and by
yr:^(N)->^, / ->yT(/) , the function given by N ( I ) = 'Zpej2

p. This
mapping is onto and one-to-one and its inverse is denoted by P: N ->
P f ( N ) , n ^ > S(n), so n = ZpesM 2". Observe that N ( < / > ) = 0 , S (0 ) = <j>. Dis-
joint unions of sets in ^-(N) are transformed by N into sums in N. An old
result of Lucas (1877) states that [(£)] = 1 if and only if ./(/>)£./(») (see
ref. [K]), hence

Remark. Observe that <p"2 is 2"-to-l, \(/>2"{x} | =2n Vxe X2. Even
so, if PP is a Markov measure with np^(2,^) (i.e., POI^PIO) then
<?2: X2 -* %2 is PP a.e. 1-to-l for every n e N. Let us show it.

From (1) we have ((p%x)k = xk + xk + 2
n. Fix yeX2. For every

ze{0, 1}2n the equalities (p2
2x = y and xk = zk for k<2" determines a

unique x = x(z) because the recurrence relation xk + ( f + 1 ) 2 * = yk + (s+i)2» +
Xk + f2»- Denote x(k\z) = ((x(k\z))e = xk+n«: fe N). Let z, z' be such that



On the other hand,

822/90/1-2-29

Put CU = P { S ( n ) = 0} and Bn = P{S(n) = 0, xT, = 0}. For n^1, £„ =
P{5 (n-1) = 0, xrn = 0}. For n^2 it is satisfied

Proof. Define »= 1-(P10 + P 0 1)e(- l , 1). The matrix /•" = ( / > £ > :
/, y e Z2) verifies /><,"> = Trf + ( -1)'+' (1 - rcf) yj for n ̂  0. In the sequel we
denote TT, = Trf, 7 = }^ and P = PP. Define /<„ = P{5(n) = 0} -2. First let us
show the following recurrence relation

The ergodic theorem applied to the Markov measure PPi« (whose invariant
vector is also np) implies P(X2) = 1. Since np=£(1/2, 1/2) at most one of the
two points x(k)(z), x(k\z') verifies the relation defined in X2. This can be
made Vk<n then there is at most one point xeX2 such that <pf.v = y, for
every yeX2. Hence q>% is 1-to-l P^-a.e. Vn. If m<2", the equality
</>f = 9?f ~m op™ implies (p™ is 1-to-l on X2. So <p%: X2-* X2 is 1-to-l
Vne lU |

For proving Theorem 2 (i i) it will be useful the following result.

Lemma 3. Let (xn: n e N ) be distributed according to the Markov
invariant measure PP with P^do). Then there exist c < oc, Fe [0, 1) such
that for any increasing sequence (r k : k e N) the sequence of random
variables S(n) = ̂ k<nxrk verifies

z ' k = 1 — z k then it follows by recurrence that xk + f2»(z) = 1 — xk + fy,(z')
W e N . Now define
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with r' = \7i0 — nl\+y(l — \n0 — Jti\), which belongs to (0, 1). Hence

Analogously we can show \An + l\ </"" max(\An_11, \An_2\). Then, we
conclude ma\(\A2n + i \, \A2n ) ̂  2F'" which implies the result.

this last equality because P = PP is an invariant Markov measure.

Assume ye [0, 1). Observe that

Since Cn = An + 2 we find that An verifies the equation with the same coef-
ficients in An, An^}, An_2 as those of Cn, Ca_l, Cn_2 and with constant
term:

From (3) and (4) we get

Since
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Consider the family of sets

In order to prove Theorem 2 ( i i) , it suffices to show that the sequence of
sets ( R N : N e N ) has density 1, i.e., it verifies l i m N ^ a D ( \ M N \ / N + 1) = I.
Indeed, from this fact we deduce

For.v=| . / (yV) | + l we put AwN}l + l.N={n^N:6r,n = 6 r , N V r } = { N } .

Then

By the same arguments as above we can show \An\^r" ma\(\An_t\,
\An_2\) and ma\(\A2n + l\, \A2n\)^2r"n. Then the result follows. |

Remark. For the particular sequence (rk = k,keN) the proof of
last lemma can be made shortly by simply observing that the sequence of
random vectors ((S(n + 1), 5(n)), ne N) is Markov and by computing its
stationary probability vector. |

Proof of Theorem 2. It is enough to consider the case B=1, then
(PB=(PI- Fix a6(0, 1/2}. We remind the following equality, which is shown
by using elementary large deviations techniques
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Denote J ( n ) = {dltn>62.n> ' •' >$ \sM\.n\ and < 5 A r , « = - 1 for k>
|,/(«)|. We set A{iJV= {n^N: 8itn <S[iN} and in general

From (1) (^"•v)(0) = IAr6J>(n).v / t. Since |{/c,/(/j)} =2^("", Lemma 3
implies



by using previous inequalities we get

Hence lim^ «,(!/# + U \{n^N}\^N\ = 0, i.e., (<%N:NeN) is of density 1.
Let us show Theorem 2 part (i). The sequence ( j c n : « e N ) is dis-

tributed according to the Bernoulli measure PK. In this case the following
equality holds

Indeed, the sequence of random variables Sn = ̂ p^n xp is a Markov chain
with transition probabilities verifying /5<"> = ^( 1 + ( — 1 )'+j p").

The following notation will be helpful. For a fixed Je^-(N) and (£^N)
a sequence of sets such that yN^{n^N], we put yNi j = {n ^ N:
n + re 3$N for r e J}. If (yN) is of density one then (,9^_ j) is also of density
1. It is also useful to introduce two sequences of sets of density 1. Denote
Gn = max(N\J(n))n{p^dlin} and (NV/(n) ) n { /><£ , , „} = {B1,n< B2,n

< ••' <&?„,»}• Now, fix ae(0, |), take ee (0 ,a ) and e'e(0, |(a-e)). For
/ = max J we define

Now, from the definition of SN we get \ASfN ^2'°8logN for SN<s^ \S(N)\.
Since

We have {n^N} =\Jl^,^im + l Altlf md \As_N\=2s>-» for i^s^
\J*(N)\. Take ^ = sup{i: 5SiN~& log log N}. Observe that SN^\ because
(J l i J V = integer part of log N. From (5) we obtain for 1 ̂  i< \^(N)\
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It can be easily shown that the sequences of sets (3t'N:Ne^) and
(Sft,: Ne N) are of density 1.

Now we are ready to prove the result. Notice that for every ( i k : k < .$) e
Zj there exists a ( j k : k < s ) e J . s

2 such that

Then it suffices to show that for any J e ^ - ( N ) with OeJ and ( i r : r e J ) e
Z^1, it is verified

Observe that we only need to prove these set of equalities for ir = 0, r e J.
For the other cylinders the equality follows from well known algebraic rela-
tions.

We denote £/(«) = P{(^ + rx)(Q) = 0, r e J } , then we must prove that

We have

Put & = &j(n) = Urey {/= ^(» + r)}\U,e/ {>(n + r)}. We have

where jr verifies

being H(r, I) = { r ' e J : J(n + r')<=J(n+ r)}.



Then

We shall analyze the three sums appearing (at the right hand side (RHS)
in expression (8).

By using the relation

we get

then the first sum at the RHS in (8) vanishes.

Now

We have
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Let us analyze the second term appearing at the RHS in (8).

Where ar(I) — £re/. l/s^(n + r) Zr'6W(r,/) 1/eXn + r ' l -

We shall prove that for n e 0t'N r\ 3tn
N it is satisfied the following

property: for every J' s J, J' /</>, there exists le y such that ar(I) = 1.
Consider ne&'N r\0l"N. We denote ,/+(n + r) = ̂ (n + r)n { p > £

log log N} and JL(« + r) = ,/(n + r )n {/>;geloglog W}. From the defini-
tion of @'N we have that J+(n + r) = J+(n) for reJ, and since
./(n + r)/ ^(n + r1) for r^r ' in J we deduce •/_(n +r) ^ J_(n + r') for
r ^ r' in J.

For reJ pick I'r ̂  J+(n + r), I'r j= ,f+(n + r). Notice that ^(n + r) is
not empty whenever n^St"N. Then J^_(n + r)u/ ' r £ J^(w+ r), ./_(n + r ) u
/; ^ J^(n + r) and •/_(n + r) u/'r is different to J^(n + r') for all r' + r in J.
In particular, ,/_(n + r)u/ ' r e J5^(n). Let us prove that ar(J_(n + r)u
/^) = 1 for all J' such that r = max J', If./_(n + r) vI'r^S(n + r) for some
re/', then J*L(n+ r -)S^_(n + r) and consequently /•^/ :<max J = r. On
the other hand, if for some r' e J,S_(n + r) u/'r ^^(M + r')£./(n + r),
then r' = r, proving the assertion.

We deduce that for all ,/'^0 there exists /eJz? such that a./.(/) = l.
From (9) we conclude that Ky(«) = 0 for all ne@'Nr\ &"N.

Let us analyze the last term at the RHS in (8).



Then the theorem is shown. |

3. PROOF OF THEOREM 1

Before proving Theorem 1 we state some basic facts about the
automaton <pB. If B = b 0 - -b R - 1 is the aperiodic block defining (pB, we

Therefore, by taking into account that (&N,J r \2H'N , Jr\&l"N , j , Ne N) is of
density 1, we get

Hence, Wj(n)<2m + |J||/>]1/2<logA°e''082 + 1 for n e0rNtJ, and we conclude

Now, we have that \3"(J')\ = \ { I e £ C : ar(I) = 1}| and from above discus-
sion we get

We denote &'(J') the set &' defined by relation (11). If 3"(J') / $ we get

Fix /'£/,. J'7^. There is only one ^'^5f such that relation (10) is
verified, and it is given by

If for a fixed couple 3",J', there exists some term 7eJz? such that
[«/•(/) + 1^»(/)] = 1, from (9) we deduce that E(f ; : /6js?)ez^
(_l)2W/[«rU> + i.*"('>:i:=o. Hence we can restrict ourselves to those
couples £(", J' such that
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denote by B = (b0+\)bi---bR_l. In what follows we will extend the
action of q>B to the words of length larger than R + 1 in the obvious way.

Lemma 4. Let w a - - - w R - 1 , w 0 - - - w R - 1 e Z f \ { B } , then q>B(w0---
w R - 1 w 0 ' - - w R - 1 ) * B .

Proof. Suppose <pB( w0 • • • W R - 1 , vP0 • • • W R - 1 ) = B. Since each b: must
be equal to M>, or W,+ 1 , W Q - - - W R _ I J=B and W O - - - W R - 1 ^B, there exists
/* 6 (0,..., R — 2} such that wa---wl* = b0---bi* and w,* + l=bi* + l + l.
Therefore, w,* + i - - - w R - 1 W 0 - - - w i » = B, which implies that B is not
aperiodic. This is a contradiction and the lemma is proved. |

Lemma 5. Let WO---WR_I eZf.

Proof. All the properties follow straightforward from the aperiodicity
of B. We only show property (i), the other statements are shown similarly.
Since B cannot overlap B in a nontrivial way, only the first coordinate of
B can be flipped when we compute q>B(w0 •• •wR_lB). The result is B when
wo • • • WR- i ̂  B and it is B when w0 • • • WR-1 = B. |

From these lemmas we deduce that the restriction of the map (pB to
YB = {x e X2: V/ e N, x(iR, iR + R - 1) € {B, B}} is topologically conjugate
to the mod 2 sum automaton. In fact, the map \j/: YB -»X} defined by
(\l/x)n = 1 if and only if x(nR, nR + R — 1) = B is continuous, invertible and
•A ° <PB = 9>2 ° "A- Moreover, since B and B are different only in the first let-
ter, if we suppose that b0 = 1 then the action of (pB over Ar = (x,),6 N e YB

is determined by the action of q>2 over the point y = (yt)ieN =
(xtR)ieN e^2- 1. In the sequel and without loss of generality we shall suppose
that £0= 1-

It is useful to introduce for each xeX2 and n e M , the nth-diagonal
produced by the action of </> B by

Lemma 6. Let xe X2 and ne N. If for some ie {0,..., n}, d ( i )
n ( x ) = B

then dn(x)e{B,B}n +1.



Proof. We show the lemma by induction. It is straightforward for
n = 0. We assume the lemma holds for n — 1, n > 0. Let us suppose that
d(^(x) = B for some ie{0,..., n}. By using Lemma 5, we can distinguish
two cases. For al l_j e {0,...,n} d(J)(x) = B, in which case the lemma holds,
or for some je {0,..., n} d(

n
j\x) = 5 with d(j~"(x) = B or d(

n
j+l\x) = B. In

the last case, we deduce from Lemma 5 that d(
l
k^l(x) = B for some

k£ {0,..., n - 1}. It follows by induction that d n _ l ( x ) e {B, B}".
Since, by Lemma 5, d n _ l ( x ) determines the value of dn(x) and

d«\x) = B, we conclude that dn(x)e {B, B } n + 1 . |

Lemma 7. Let xeX2, i e { 0 , . . . , R — 1 } and meN such that
x(i + mR, i + mR + R - 1 ) $ { B , B } . Then for any t^l, ((p^ + 'x)(i) =
((pa + 'x)(i) where x = x(0, i- 1) Sm+lx(i+(m+ 1) R, +00).

Proof. Since the automaton is one-sided we only have to prove the
case i = 0. We will prove that d(k\x)^B if and only if d^(x)^B for
ke{0,..., j} and/^w, which implies the result. In fact, ((p^ + !x)(0) and
(<?£ + 'jc)(0) are determined by the values in dm + t _ i ( x ) and Dm + t - 1 ( x )
respectively. Let us begin by pointing out that dm(x) = Bm +1 and, by
Lemma 6, d%}(x) * B for allke{0,..., m}. Thus, we have d%\x) ^B if and
only if «?<*>(*) 7* &

Assume we have already shown that d f ) ( x ) ^ B if and only if
i/j*^) ^B for ke {0,..., j},j^m. We will prove that the same result holds
for j+ 1. We have to analyze two cases, when df}(x) and df\x) are dif-
ferent from B for all z'e{0,..., j} and when 6?)fc)(x) = d(k\x) = B for some
/ce{0,..., y}. In the first case, if d f ^ ( x ) = B then, by Lemma 5, d j + l ( x ) =
dJ+1(x) = BJ+2 because dj°lj(x) = dj°l1(x), and the statement for j+1
holds. If d$l(x) = d<%l(x)*B, by Lemma 5, we have that d f ^ ( x ) and
df\(x) are different from B for all k e { 0 , . . . , j } . In the second case,
Lemma 6 and the induction hypothesis implies that dj(x) = dj(x). There-
fore, since df^(x) = d f ^ ^ x ) , we conclude that dj+i(x) = d j + l ( x ) , proving
the lemma. |

For xeX2 define D(x)= {me N: x(mR, mR + R- 1)^ {B, B}} u
{ —1}. According to the last lemma if we want to compute (<p"Bx)(0) we
only need the information of x in the block x((m+ 1) R,nR), where
meD(x), m<n and {m,..., n — 1} n D(x) = {m}. Let us define for xeX2

and ne N the interval I(x, n) = {m + 1,..., n}.
Following this property we will decompose the set Cn = {xeX2:

((pn
B

+Jx)(0) = aj,Q^j^^-l}, where we N,^ 1 and a0,...,a1-i 6 {0, 1}.
Fix ue{0, l} and me{-l,0,...,H-l}. We define
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We will prove that for each se {1,..., k] and we {0, 1}' the following
limits exist

Let us fix n e M , we {-1,0,...,n-1}, ue{0, 1}' and je {0,..., t- 1}.
For xeC n , m , u we have that ((f>"B

+Jx)(0) only depends on the interval
of coordinates determined by I(x, n + j). A simple computation yields
to I(x,n+j)={Af+\,..., n + j}, where M = max({w} u {n + k: ke{0,...,
j—1} A uk = 0}). This fact implies that I(x,n + j) = I(x',n + j) whenever
x, x' £ Cn m> „. Moreover, if x e Cn, m< „ and x' e Cn, m^ u with n—m = n'—m'
then I(x',n+j)-m-\=I(x',n''+j)-ml-\. For 'ae N\{0}, we {0, 1}'
and ye {0,..., / - 1} define J(j, u, s) s {0,..., s + l - 2} such that I(x, n + j) =
J(j, u, s) + m + 1 for every x e Cn< m> „ and n—m = s.

By taking A: terms from the third sum, we obtain for N enough large

Then

where N(x, n} = MI(x,n)~ 1. Therefore, Cn = U « e j o , i > ' Um='-i c«,m,« is a
disjoint union. It follows,
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Therefore, by using the equivalence ,/(« — &)£,/(«)<=>,/(£)£./(«),
we get for s> 1 and m = n—s,

Let n . n ' e N be such that n = Z/>o^2',«' = Z,>0^'/2/ with &,j?',e
{0,1} and B, = B;.for i e {0,..., M(/, j) - 1}, where M(/,*)'= |_ log2(l + s)J + 1.
The integers verifying the last condition are said to be M ( l , s)-compatible.

where A. = nbonbl ••• nbR-1 + n^nbl • • • n b R _ l =nbl--- 7 t 6 ,_ , , A ( M ) = Az'' = i"'
(l-A)'-2'-"1". If A = l , that is R=1, we have A ( w ) = 0 for we{0 , 1}'\
{(1,..., 1)} and A((1,..., 1))= 1. Also D(x) = {-l} for all x e X2, then P(CJ =
P(Cn,_M1 n).

Put

Hence, by using the fact that (pB is conjugate with the mod 2 sum
automaton on YB and by using Lemma 7, we obtain
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therefore its limit is 0. If R= 1 the limit is 0 for U E { 0 , 1 } \ { ( 1,..., 1)} and
it coincides with the limit in Theorem 2 when u = (1,..., 1). This fact proves
the theorem in the case B = 0 or B = 1.

Let us conclude the result of the theorem. Notice that when A / 1 the
series

exists. Furthermore, for any Ne^ and ke M we have

Observe that this limit is 0 when R=l.
On the other hand, for R > 1

where gn< s< „ = #„•, «• - *.« f°r any n' e {s,..., N — 1} that is M( f, s (-compatible
with n. We take the limit to get

Therefore we obtain for s ^ 1

Let «, n'^s^l be a couple of M(S, s (-compatible integers. Then
Sn,n-s,u — 8n',n'~s,u for any u e {0, 1}'. In fact, if n and n' are M(/, s (-com-
patible then
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Therefore,

which proves the theorem. |
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